دانلود پایان نامه

5-2- جمع بندی تحقیق 123
5-3- نتایج و نوآوری های تحقیق 124
5-4- پیشنهادات برای تحقیقات آتی 125

فهرست جدول ها
جدول 2-1 : توابع فعالسازی نرون های مختلف در شبکه های عصبی 49
جدول 4-2 : شرح اندیکاتورهای معروف تحلیل تکنیکال 61
جدول 4-2 : شرح اندیکاتورهای معروف تحلیل تکنیکال : ادامه جدول 62
جدول 3-1 : صنایع و شرکت های انتخاب شده جهت انجام پژوهش 85
جدول 3-2 : اندیکاتورهای به کار رفته در پژوهش 89
جدول 4-1 : تغییرات تعداد رکوردهای پایگاه های ساخته شدن پس از حذف داده های مغشوش 102
جدول 4-2 : تغییرات تعداد رکوردهای پایگاه های ساخته شده، پس از حذف داده های پرت 103
جدول 4-3 : سری های زمانی ساخته شده توسط اندیکاتورهای تحلیل تکنیکال 104
جدول 4-4 : بهترین lag شرکت های حاضر در صنعت بانک و مؤسسات مالی با بانک پارسیان 105
جدول 4-5 : بهترین lag شرکت های حاضر در صنعت شیمیایی با صنایع شیمیایی فارس 106
جدول 4-5 : بهترین lag شرکت های حاضر در صنعت شیمیایی با صنایع شیمیایی فارس : ادامه جدول 107
جدول 4-6 : بهترین lag شرکت های حاضر در صنعت فلزات اساسی با فولاد مبارکه اصفهان 107
جدول 4-6 : بهترین lag شرکت های حاضر در صنعت فلزات اساسی با فولاد مبارکه اصفهان : ادامه جدول 108
جدول 4-7 : تغییرات تعداد رکوردهای پایگاه های ساخته شده، پس از حذف داده های مغشوش اندیکاتورها 109
جدول 4-8 : اندیکاتورهای انتخاب شده توسط روش رگرسیون پله ای برای ورود به شبکه عصبی 110
جدول 4-9 : دسته بندی اندیکاتورهای مشابه 111
جدول 4-10 : اندیکاتورهای انتخاب شده از دسته ها برای ورود به شبکه عصبی 111
جدول 4-11 : داده های تخصیص داده شده به شبکه عصبی در هر پایگاه 116
جدول 4-12 : مقایسه نتایج به دست آمده از شبکه عصبی و مدل های رقیب برای سهام بانک پارسیان 120
جدول 4-13 : مقایسه نتایج به دست آمده از شبکه عصبی و مدل های رقیب برای سهام صنایع شیمیای فارس 120
جدول 4-14 : مقایسه نتایج به دست آمده از شبکه عصبی و مدل های رقیب برای سهام فولاد مبارکه اصفهان 121

فهرست شکل ها
شکل 1-1 : دسته بندی کلی تحلیل های کاربردی در بازار سرمایه 21
شکل2-2 : ساختار شبکه عصبی پیش رو (غیر بازگشتی) باسه لایه ،لایه ورودی ، لایه میانی و لایه خروجی 45
شکل2-3 : ساختار شبکه عصبی برگشتی با سه لایه ، لایه های دوم و سوم برگشتی می باشند. 45
شکل 2-4 : مدل یک نرون خطی و غیرخطی(خطی یا غیر خطی بودن به نوع تابع فعال ساز بستگی دارد) 47
شکل2-5 : نحوه عملکرد بایاس در خروجی ترکیب کننده خطی 48
شکل 2-6 : توابع فعالسازی(الف) حدآستانه، (ب) خطی تکه‌ای، (ج) سیگموئید تک قطبی، (د)گوسین، (ه) خطی (و) سیگموئید دوقطبی 50
شکل 2-7 : شبکه پیشرو با یک لایه فعال (خروجی) 51
شکل 2-8 : شبکه عصبی پیشرو با یک لایه مخفی و یک لایه خروجی 52
شکل 2-9 : شبکه عصبی بازگشتی بدون حلقه خودپسخور و نرون‌های میانی 53
شکل 2-10 : شبکه بازگشتی با نرونهای مخفیبا حجم حافظه بالاتر 54
شکل 2-11 : یک شبکه عصبی با سه نرون و دولایه فعال 56
شکل 3-1 : شمای کلی مراحل انجام تحقیق 84
شکل 3-1 : شباهت سری های سفید و سیاه با در نظر گرفتن lag 92
شکل 4-1 : قیمت های بسته شدن سهام بانک پارسیان و بانک کارآفرین 113
شکل 4-2 : قیمت های بسته شدن سهام پتروشیمی خارک و صنایع شیمیایی فارس 114
شکل 4-3 : قیمت های بسته شدن سهام فولاد مبارکه اصفهان و فولاد خوزستان 115
شکل 4-4 : شبکه عصبی ساخته شده توسط نرم افزار متلب 116
شکل 4-5 : قیمت های پایین پیش بینی شده و واقعی برای سهام بانک پارسیان 117
شکل 4-6 : قیمت های بالای پیشش بینی شده و واقعی برای سهام بانک پارسیان 117
شکل 4-7 : قیمت های پایین پیش بینی شده و واقعی برای سهام صنایع شیمیایی فارس 118
شکل 4-8 : قیمت های بالای پیش بینی شده و واقعی برای سهام صنایع شیمیایی فارس 118
شکل 4-9 : قیمت های پایین پیش بینی شده و واقعی برای سهام فولاد مبارکه اصفهان 119
شکل 4-10 : قیمت های بالای پیش بینی شده و واقعی برای سهام فولاد مبارکه اصفهان 119

فصل اول
کلیات تحقیق

مقدمه
عدم قطعیت در بازار سرمایه به معنای تفاوت مقادیر مورد انتظار و مقادیری است که در واقعیت اتفاق می‌افتند. طراحی روش‌های تحلیل و پیش‌بینی مختلف در بازار سرمایه نیز به دلیل بالا بودن این مقدار و نیاز به دانستن قیمت‌ها در آینده با قطعیت بیشتر یا عدم قطعیت کمتر بوده است. برای کسب سود در بازار سرمایه، سرمایه‌گذاران همواره به دنبال پیدا کردن سهم مناسب جهت سرمایه‌گذاری و قیمت مناسب برای خرید و فروش بوده‌اند و لذا تمام مدل‌های پیش بینی مطرح شده همواره به دنبال پاسخ دادن به سه سؤال اساسی بوده‌اند؛ چه سهمی، در چه محدوده زمانی و در چه قیمتی خریداری شود و یا به فروش برسد. قبل از بررسی پاسخ‌های داده شده به این سؤالات، باید به سؤال جدی‌تری پاسخ داد. از جمله اینکه آیا پیش بینی بازارهای مالی ممکن است؟!
همچنین، در ادامه باید به این موضوع پرداخته شود که در صورت پیش بینی پذیر بودن بازار سرمایه، باید به بررسی ابعاد مختلف بازار سرمایه و متدهایی که در هر زمینه برای پیش بینی ارائه شده است، پرداخت. در ادامه باید بررسی کرد که چه متدهایی کارایی لازم برای این پیش‌بینی را دارند و آیا ترکیب این متدها به صورت کلی ممکن است یا خیر. در ادامه خواهیم دید که می‌توان ابزار به کار گرفته شده در پیش بینی تمام ابعاد بازار سرمایه را در سه
دسته کلی متدهای تکنیکال، متدهای بنیادین و متدهای ریاضی، شامل متدهای کلاسیک سری زمانی و رگرسیون و متدهای هوش مصنوعی قرار داد.
در این پژوهش، با بررسی تمام موارد بالا و امکان سنجی تلفیق متدهای به کارگرفته شده جهت پیش بینی قیمت، به سؤالات مطرح شده پاسخ داده خواهد شد و برای اولین بار، به پیش بینی دو قیمت برای دوره‌های جلوتر پرداخته می شود؛ قیمت بالا و قیمت پایین سهام. به این وسیله، سفته بازان1 می‌توانند با به کارگیری این متد، با دقت قابل قبولی به پیش‌بینی قیمت پرداخته و از طریق نوسان گیری، کسب سود کنند.

مطلب مشابه :  پایان نامه قرار بازداشت موقت

1-2- نظریه کارایی بازار سرمایه
قبل از (فاما2 1970)، همه فقط به دنبال پاسخ دادن به سؤالات سه گانه ذکر شده در بازار سرمایه بوده اند. با مطرح شدن نظریه کارایی بازار سرمایه فاما، سؤال بزرگ دیگری نیز پیش روی سرمایه‌گذاران و تحلیل‌گران قرار گرفت؛ آیا اصلا تحلیل و پیش بینی آینده بازار سهام ممکن است؟! فاما با طرح نظریه کارایی بازار سرمایه، بازار را متشکل از سرمایه گذارانی فرض کرد که همگی به اطلاعات یکسانی از گذشته و حال دسترسی دارند. اطلاعات سیاسی، اقتصادی، نهانی و … . در واقع برای باور کردن نظریه فاما حتی لازم نیست همه سرمایه گذاران به اطلاعات یکسانی دسترسی داشته باشند، تنها لازم است تعداد زیادی از سرمایه گذاران به این اطلاعات به صورت یکسان و مساوی دسترسی داشته باشند. زمانی که اطلاعات در دسترس مساوی باشند، ابزارهای تحلیل و پیش بینی نیز یکسان باشند؛ هیچ سرمایه گذاری نمی‌تواند سود غیر عادی کسب کند. برای مثال، اگر اولین نفری که اطلاعات نهانی دارد، قصد خرید یک سهم را بکند؛ در مدت زمانی که در پی انجام این امر است، فروشندگان از این اطلاعات مطلع شده و سهم خود را گران‌تر از قبل می‌فروشند. لذا فرصت کسب سود غیر عادی وجود ندارد. تعریف دقیق و کامل بازار کارای سرمایه نیز عبارت است از: بازاری که سرعت انتقال اطلاعات در آن بسیار زیاد باشد. لذا فاما سه نوع از کارایی را تعریف می‌کند، بازار کارای ضعیف که سرعت انتقال اطلاعات در آن کم است ولی همچنان امکان کسب سود غیرعادی با استفاده از اطلاعات گذشته ممکن نیست. بازار کارای متوسط که سرعت نقل اطلاعات در آن زیاد است و امکان کسب سود غیر عادی با استفاده از اطلاعات حال ممکن نیست. بازار کارای قوی که سرعت انتقال اطلاعات در آن بسیار زیاد بوده و حتی دارندگان اطلاعات نهانی نیز فرصت کسب سود غیر عادی ندارند. در نهایت فاما نتیجه می‌گیرد که نوسان قیمت در بازار تصادفی بوده و امکان پیش‌بینی آن موجود نیست.
پس از مطرح شدن نظریه کارایی بازار سرمایه، سرمایه گذاران بازار سرمایه به دو دسته تقسیم شدند. دسته‌ای که به کارایی بازار اعتقاد داشتند، به سرمایه گذاری های بلند مدت روی آوردند، دلیل این امر این بود که این دسته امکان کسب سود از طریق پیش بینی بازار را منتفی دانسته و لذا فرصتی برای کسب سود غیر عادی از طریق خرید و فروش کوتاه مدت وجود ندارد. دسته دیگر سرمایه گذاران به این نظریه اعتقاد ندارند و به آن انتقادهایی دارند. این دسته به پیش بینی بازار سرمایه اعتقاد داشته و لذا از مدل‌های مختلفی برای این پیش‌بینی‌ها استفاده کرده‌اند. این دسته، علاوه بر سرمایه گذاری‌های بلند مدت، به سرمایه گذاری‌های کوتاه مدت و میان مدت نیز پرداخته و از طریق خرید و فروش‌های پیوسته، تلاش در کسب سود غیر عادی می‌کنند.
از جمله انتقادهایی که به نظریه کارایی بازار سرمایه وارد است، می‌توان به قواعد مشهور بازار سرمایه اشاره کرد. از جمله این قواعد می‌توان به پایین آمدن قیمت‌ها به صورت عمومی در پایان هفته‌ها اشاره کرد؛ دلیل این امر این است که در روزهای تعطیل ممکن است اتفاقات ناخوشایندی رخ دهد که باعث افت شدید قیمت‌ها در ابتدای هفته بعد منجر شود. قاعده دیگر پایین آمدن قیمت‌ها در انتهای سال است. به صورت عمومی بازدهی سهامی که P/E بالاتری دارند، بالاتر است. این قواعد که به صورت عرف بازار درآمده‌اند از جمله نقدهایی است که سرمایه گذاران به نظریه کارایی بازار سرمایه که پیش بینی را غیرممکن می‌داند وارد می‌دانند.
انتقاد دیگر سرمایه گذاران، این است که روندهای فصلی، دوره‌ای و خطی و غیرخطی از طریق مدل‌های اقتصادسنجی و سری زمانی کاملا قابل شناسایی و مشهود است. از نظر تجربی، بسیاری از سرمایه گذاران با استفاده از تحلیل‌های تکنیکال و بنیادین به کسب سود می‌پردازند. (پوا3 2008) در مقاله‌ای به بررسی روندهای موجود در بازار سرمایه پرداخته و اظهار می‌دارد که از نقطه نظر عملی این نظریه صحیح نبوده و نظریه کارایی بازار سرمایه، در یک بازار کاملا ایده آل صحت دارد. لذا با توجه به انتقادهای ذکر شده و فرصت‌های عملی درک شده در بازار توسط سرمایه گذاران، در این مقاله فرض پیش بینی پذیر بودن بازار سرمایه مورد قبول قرار گرفته و به اولین سؤال مطرح شده به این صورت پاسخ می‌دهیم.

مطلب مشابه :  عکس العمل کتابداران در مقابل تغییرکتابخانها

1-3- ابعاد مختلف بازار سرمایه و ابزارهای پیش بینی
حال که به پیش بینی پذیر بودن بازار اعتقاد پیدا می‌کنیم، زمان پاسخ دادن به سؤالات سه گانه مطرح شده می‌رسد، چه سهمی، چه محدوده زمانی و چه قیمتی. برای پاسخ دادن به این سؤال از مدل‌های بسیار متنوعی استفاده شده است. مدل‌های که به پیش بینی سهم مورد نظر می‌پردازند عموما با استفاده از تحلیل‌های بنیادین و روش‌های کلاسیک پیش بینی مثل اقتصاد سنجی و سری زمانی مورد بررسی قرار می‌گیرند. مدل‌هایی ک
ه به محدوده زمانی می‌پردازند، در پی یافتن استراتژی خاصی برای معاملات هستند و از مدل‌های تحلیل و پیش بینی تکنیکال یا مدل‌های توسعه یافته هوش مصنوعی بهره می‌برند. در پاسخ به سؤال چه قیمتی، دسته بسیار بزرگی از مدل‌ها به کار می‌آیند. مدل‌های کلاسیک، تحلیل‌های بنیادی، تحلیل‌های تکنیکی و الگوریتم‌های هوش مصنوعی. در این مقاله ما به طور دقیق در پی پاسخ به سؤال سوم، یعنی پیش بینی قیمت هستیم، بیشترین گوناگونی در حوزه پیش بینی نیز در این حوزه است. در ادامه به اختصار به توضیح کوتاهی از انواع مدل‌های پیش بینی و دلیل انتخاب شبکه های عصبی به عنوان مدل منتخب می‌پرازیم.
مدل‌های پیش‌بینی قیمت سهام را می‌توان به صورت کلی در سه دسته جای داد، تحلیل‌های تکنیکال، تحلیل‌های بنیادین و تحلیل‌های با استفاده از الگوریتم‌های هوش مصنوعی. تحلیل تکنیکال با مطالعه روند تغییرات گذشته قیمت سهام و با این پیش فرض که اتفاقات گذشته در آینده تکرار می‌شود به پیش‌بینی می‌پردازد. در واقع چارتیست‌ها یا همان تکنیکال کاران اعتقاد دارند که تنها چیزی که قیمت سهام را تغییر می‌دهد میزان تقاضا و عرضه در بازار است. در واقع این دسته اعتقاد دارند که قیمت سهام تحت تأثیر هر عامل دیگر بنیادین اقتصادی که تغییر کنند، این عوامل تنها روی عرضه و تقاضا در بازار تأثیر دارند و لذا با پیش بینی این مقادیر می‌توان قیمت‌ها را نیز پیش بینی کرد. دو مدل کلی به کار گرفته شده توسط این دسته عبارتند از تطابق الگوها و استفاده از اندیکاتورها؛ الگوها در واقع روند‌های تغییر قیمت در گذشته هستند که با توجه به اعتقاد به تکرار شدن آنها در آینده می‌توان از انطباق آنها برای پیش بینی آینده استفاده کرد. اندیکاتورها نیز مدل‌های ریاضی هستند که با استفاده از شاخص‌های قیمتی مثل قیمت باز و بسته شدن و حجم مبادلات انجام شده، عرضه و تقاضا و در نهایت قیمت را پیش‌بینی می‌نمایند.
تحلیل بنیادین با شناسایی عوامل مؤثر بر قیمت سهام و تحلیل تأثیر هر کدام به پیش‌بینی قیمت می‌پردازد. فاندامنتال کاران یا همان استفاده‌کنندگان از تحلیل بنیادین اعتقاد دارند که عوامل بسیار زیادی در قیمت سهام تأثیر دارند. قیمت‌های جهانی محصولاتی که کمپانی‌ها تولید می‌کنند، قیمت مواد اولیه مورد نیاز آنها و سایر عوامل سیاسی و اقتصادی تأثیرگذار در فروش و سود کمپانی از جمله این عوامل هستند. به طور کلی تحلیل‌هایی که در این حوزه صورت می‌گیرند عبارتند از تحلیل صورت‌های مالی که به دو صورت افقی (مقایسه صورت‌های مالی در طی سالیان مختلف و تحلیل تغییرات آنها) و عمودی (تحلیل عناصر موجود در صورت مالی و مقایسه آنها و بررسی نسبت‌های مالی) و همچنین مدل‌های کلاسیک پیش‌بینی نظیر رگرسیون (پیدا کردن رابطه میان قیمت سهام و متغیرهایی که تعریف می‌گردند) و سری زمانی (شناخت سیکل‌ها و روندهای موجود در قیمت سهام).
الگوریتم‌های هوش مصنوعی که استفاده از آنها به سرعت در حال رشد میان سرمایه گذاران است در واقع تلفیقی از تمام روش‌های پیش بینی ذکر شده با توانایی برازش منحنی‌های غیرخطی با درجه بالا است. این الگوریتم ها قابلیت کار با تعداد زیادی از متغیرها و پیدا کردن رابطه مناسب میان این متغیرها را دارند. آنگونه که ذکر شد، عوامل تأثیر گذار در قیمت سهام بسیار زیاد هستند و مدل‌های کلاسیک و تحلیل‌های قدیمی و تجربی پاسخگوی این تعداد عوامل نیستند. برای پیش بینی‌های کوتاه مدت

دیدگاهتان را بنویسید