عموما از مدلهای کلاسیک سری زمانی و تحلیل تکنیکال استفاده میشود، هر کدام از این دو، تعداد زیادی الگوریتم دیگر را شامل میشوند که کار جمع بندی و نتیجه گیری را دشوار میکند. الگوریتمهای هوش مصنوعی این قدرت را دارند که تمام این تحلیلها را با یکدیگر به وسیله وزن دهیهای بهینه ترکیب کرده و یک جواب یکتا و بهینه را ارائه دهد.
از میان الگوریتمهای هوش مصنوعی، استفاده از شبکههای عصبی در مبحث پیش بینی بسیار زیاد است. این امر به دلیل قابلیت شبکه عصبی در کار با تعداد زیادی متغیر، برازش بسیار دقیقی از سری زمانی، تحت تأثیر دادههای پرت قرار نگرفتن، عدم محدودیت برای درجه خاصی از غیرخطی بودن و انعطاف پذیر بودن شبکه در مقابل تغییرات پارامترهای مدل میباشد. از جمله اقبالی که به این مدلها شده است میتوان به تاوارس و همکاران4 (2010)، فاریا و همکاران5 (2009)، تسای و چیو6 (2009) و کارا و همکاران7 (2011) اشاره کرد که در تحقیقات خود، شبکههای عصبی را از مدلهای کلاسیک و دیگر الگوریتمهای هوش مصنوعی برتر میدانند. اولیویرا و همکاران8 (2013) در بررسی جامعی که روی بازار بورس برزیل انجام دادند، به این نتیجه رسیدند که شبکه عصبی از ماشینهای بردار پشتیبان (SVM) و سری زمانی در امر پیش بینی قیمت کارا هستند.
با توجه به دلایل ذکر شده و نتایج گرفته شده در سایر تحقیقات که قسمتی از آنها ذکر شد، در این مقاله، ما نیز شبکههای عصبی را جهت پیش بینی قیمت سهام انتخاب میکنیم. نکته مهم در استفاده از شبکههای عصبی این است که این شبکه ها در ابتدا با استفاده از 75 درصد داده ها (به صورت عمومی) وارد فرآیند یادگیری میشوند. در این مرحله به دلیل قابلیت بالای شبکه عصبی جهت برازش منحنیهای پیچیده، ممکن است شبکه مدل را پیچیدهتر از آنی که هست شناسایی کند. این امر باعث میشود که مقادیر پیشبینی به مقادیر واقعی نزدیکتر شوند و تخمین دقیقتری در مرحله آموزش صورت گیرد. نکته در اینجاست که حدی از تغییرات و اختلاف میان مقادیر پیش بینی و واقعی به خاطر تصادفی بودن این تغییرات است. در تمام مدلهای پیشبینی این جزء تصادفی وجود دارد ولی شبکههای عصبی برای تخمین این مقادیر، از تعداد متغیرهای زیادتری استفاده میکنند در حالی که این مقادیر تصادفی بوده و پیش بینی پذیر نیستند. این خاصیت که به آن بیش برازش میگویند بزرگترین مشکل شبکههای عصبی میباشد.
برای از بین بردن این بیش برازش، باید ورودیهای شبکه عصبی را کاهش داد. به عبارتی باید اجازه بیش برازش را به شبکههای عصبی نداد. در این مقاله برای این کاهش تعداد متغیرها از داده کاوی استفاده شده است. داده کاوی علم کاوش دادهها جهت کشف دانش است. علم داده کاوی با ارائه راهکارهای مختلف، اولین رکن استفاده از دادهها جهت کشف دانش را حذف دادههای اضافی و شاخ و برگهای غیر ضروری میداند و لذا در این مقاله از چند تکنیک داده کاوی که در ادامه شرح داده خواهد شد استفاده گردیده است. همچنین، همانگونه که ذکر شد، مدلهایی که برای پیش بینیهای کوتاه مدت مورد استفاده قرار میگیرند، مدل های سری زمانی و تحلیلهای تکنیکال میباشند. از آنجا که ما قصد پیش بینی قیمت بسته شدن سهام را به صورت روزانه داریم نیز، با تلفیق این دو مدل، با استفاده از اندیکاتورهای تحلیل تکنیکال و قیمتهای روزهای قبل به پیش بینی میپردازیم.
قسمت دوم این مقاله به تحقیقات مشابه، قسمت سوم به تعریف فرآیند و روش انجام تحقیق، قسمت چهارم به نتایج تحقیق، قسمت پنجم نتیجه گیری و قسمت ششم به منابع تخصیص یافته است.
1-4- پژوهشهای مشابه
لو و همکاران9 (2014) پس از بررسی دلایل بیش برازش10 و تعمیم نامناسب شبکههای عصبی11، با اعمال تغییراتی در شبکه عصبی و به کار بردن کلاسی از تأخیر سازنده RBF12 شبکههای عصبی؛ موفق شده است که شبکه عصبی با دقت بیشتر و البته تعداد نرون های13 کمتر در لایه پنهان14 شبکه عصبی ساخته و نتایج آن را در دنیای واقعی امتحان کرده است.
لاهمیری15 (2013) با به کاربردن تبدیلات گسسته ویولت (SWT)16 و تقسیم سری زمانی17 قیمتی به دو بخش ماژور18 و مینور19، نتیجه میگیرد که بخش ماژور در واقع دارای فراوانی و پراکندگی پایین تری بوده و برای پیش بینی روند بلند مدت قیمت سهام مناسب است. وی پس از تبدیلات مذکور، با استفاده از شبکههای عصبی بازخور برگشتی20، به پیش بینی قیمت سهام پرداخته و با بررسی تئوری خود در 15 پایگاه داده21، نتیجه میگیرد که الگوریتم پیشنهادی وی از مدلهای ARMA 22و RW23 عملکرد بهتری دارد.
تیکنور24 (2013) با در نظر گرفتن قیمتهای روزانه و اندیکاتورهای25 تحلیل تکنیکال26 به عنوان ورودی شبکه عصبی، قیمت بسته شدن27 روز بعد را پیش بینی میکند. وی با بیان پیچیدگیهای موجود در روند28 تغییرات قیمت سهام و مشکلات پیش بینی آن، برای جلوگیری از بیش برازش و بیش آموزش29 پیشنهاد میکند که شبکه عصبی توسط الگوریتم بیزین30 کنترل شده31 و برای مدلهای با پیچیدگی بالا جریمه هایی32 تعیین گردد تا از بیش برازش و بیش آموزش جلوگیری شود. وی صحت ادعای خود را در سهامهای مایکروسافت33 و گلدمن34 به بوته آزمایش میگذارد.
بیسون35 (2014) با بیان این مسئله که سرمایه گذاری در بازار سهام، به دلیل بازده خوب آن همواره مورد توجه سرمایه گذاران بوده است؛ کسب بازده و سود مناسب در این بازار را منوط به دانستن و پیش بینی کردن نقاط بازگشت36 قیمت میدانند. لذا پیش بینی قیم
ت
سهام در روزهای آینده را مهمترین امر در راه رسیدن به این مهم می داند. وی با استفاده از فیلتر کلمن37، داده ها را پیش پردازش کرده و با شبکههای عصبی دینامیک38 به پیش بینی قیمت می پردازد. وی برای اثبات کارایی مدل پیشنهادی، چهار سهم از بازار سهام هند؛ بمبئی39 را انتخاب و بررسی کرده است.
الیویرا40 (2013) با مهم دانستن این مسئله که پیش بینی جهت تغییر قیمت سهام سهم به سزایی در تنظیم سیاستهای41 معامله گران دارد، پیشنهاد میکند که با استفاده از دادههای تاریخی42 در مدلهای ریاضی43 میتوان به صحت و دقت خوبی در پیش بینی رسید. وی با بیان این مسئله که سه نوع تحلیل سری زمانی، تکنیکال و فاندمنتال44 برای تحلیل داده های تاریخی به کار گرفته می شوند، شبکه عصبی طراحی میکند که دادههای ورودی آن، از ورودی های هر سه تحلیل ذکر شده میباشد. در واقع وی هر سه تحلیل را با هم یکی کرده و از قابلیت های هر کدام استفاده میکند. همچنین پیشنهاد میکند که استفاده محض از تمام دادهها باعث بیش برازش و پایین آمدن دقت شبکه میشود و لذا با استفاده از تکنیک های متعدد داده کاوی، داده ها را پیش پردازش45 میکند. وی صحت گفتههای خود را در بازار سهام برزیل تأیید میکند.
کارا و همکاران46 (2011) با بیان این مسئله که پیش بینی جهت تغییرات قیمت سهام امری چالش برانگیز47 و در صورت صحت بسیار پر سود است، بسط مدلهای ریاضی برای این مهم را به دلیل پیچیدگیهای ذاتی بازار سهام بسیار مشکل میداند. وی با استفاده از اندیکاتورهای تحلیل تکنیکال به عنوان ورودی، کارکرد و نتایج عملکرد دو الگوریتم دسته بندی شبکه های عصبی و ماشین های بردار پشتیبان48 را بررسی کرده و با مقایسه نتایج، کارکرد شبکه های عصبی را بهتر و مفید تر مییابد.
جاسمی و همکاران49 (2011) شبکههای عصبی را به همراه تحلیل تکنیکال و نمودارهای شمعی ژاپنی50 به کار می برد، وی در پژوهشی به جای اینکه با شبکههای عصبی قیمت و یا اندیکاتورها را پیش بینی کند، در صدد پیش بینی و برازش یک مدل رگرسیون51 میباشد که متغیرهای مستقل آن، اندیکاتورهای تکنیکی و متغیر مستقل آن روند کوتاه مدت قیمت است. اندیکاتورهای تکنیکی توسط دو روش دادههای خام52 و تحلیل تکنیکال به ترتیب به تعداد پانزده و بیست و چهار عدد تعریف شدهاند. در نهایت با آزمایش بر روی دادههای حاضر در یاهو فایننس53 به این نتیجه میرسد که نتایج پیش بینی به این روش بسیار کارآمدتر از متدهای کلاسیک است.
چانگ54 (2012) با ارائه مدل جدیدی از شبکههای عصبی تحت عنوان شبکه عصبی نیمه متصل55 به پیش بینی قیمت سهام به وسیله اندیکاتورهای تکنیکال میپردازد. این شبکه جدید، از نظر تابع فعال سازی56، تعداد لایهها و اتصال نرونها با شبکه های عصبی معمول تفاوت دارد. نخست اینکه اتصال داشتن یا نداشتن دو نرون با هم تصادفی تعیین میگردد. تفاوت دوم در تصادفی بودن تعداد لایه ها نیز میباشد و سرانجام تابع فعال سازی نیز به جای سیگموید57، تابع سینوسی58 انتخاب میگردد. وی برای اثبات کارآمدی الگوریتم پیشنهادی، آن را از سه نظر امتحان میکند. اوّل دقت پیش بینی آن را یعنی تفاوت مقادیر پیش بینی شده و مقادیر واقعی سنجیده، سپس از نظر بیش برازش با مدلهای معمولی شبکه عصبی مقایسه کرده و در نهایت عملکرد آن را با سایر الگوریتمهای رقیب مقایسه کرده است.
لو59 (2010) با این مقدمه که پیش بینی قیمت سهام و اساسا پیش بینی در تمام بازارهای مالی کاری سخت و چالش برانگیز است، استدلال میکند که این امر به دلیل وجود اغتشاش60 فراوان در میان دادههای پیش بینی کننده است. وی پیشنهاد میکند که با به کار بردن آنالیز متغیر مستقل یکپارچه61؛ در ابتدا باید در میان دادههای پیش بینی کننده آنهایی که مستقل هستند را یافته، اغتشاش موجود در آنها را از بین برده و پس از آن ورودی ها را به منظور پیش بینی قیمت به شبکه عصبی داد. وی برای اثبات مدعای خود دو شاخص بازار بورس تایلند62 و نیکی63 را انتخاب کرده و با مقایسه عملکرد الگوریتم پیشنهادی با اغتشاش زدایی توسط امواج ویولت و سپس به کار بردن شبکههای عصبی بازخور بازگشتی و همچنین با شبکههای عصبی معمولی بدون فیلترینگ و همچنین قدم زدن تصادفی؛ الگوریتم پیشنهادی را کارا مییابد.
وانگ و همکاران64 (2011) نیز اظهار میدارد که پیش بینی قیمت سهام به دلیل بالا بودن تعداد متغیرهای مستقل امری مشکل و چالشی است. وی پیشنهاد میکند در ابتدا توسط الگوریتم65 WDBP با استفاده از ویولت اغتشاشات موجود میان داده ها از بین رفته و توسط شبکههای عصبی پس خور بازگشتی، پیش بینی انجام گیرد. همچنین برای اثبات الگوریتم پیشنهادی خود، آن را در بازار شانگهای66 به بوته آزمایش گذاشته و عملکرد بهتر الگوریتم پیشنهادی را نسبت به شبکه عصبی پس خور بازگشتی تصدیق مینماید.
1-5- ضرورت انجام تحقیق و اهمیت تحقیق
همانگونه که پیشتر و در ادبیات موضوعی دیده شد، پیش بینی قیمت بالا و قیمت پایین برای یک دوره جلوتر، پیش از این انجام نشده است و خلاء وجود مدلی برای پیش بینی که به طور عملی قابل استفاده باشد، احساس می شود. پیش از این، در پژوهش های مشابه، تنها قیمت بسته شدن پیش بینی می شده است و این در حالی است که پیش بینی کننده سهم، ممکن است مالک سهام نباشد. در این حالت، پیش بینی کننده توانایی عملی برای استفاده از مدل را ندارد. دلیل این امر این است که وی احتمالا مجبور است، سهام را با همان قیمتی که پیش بینی می کند، خریدار
ی کند. لذا در این پژوهش، به پیش بینی دو قیمت بالا و پایین پرداخته شده و توسط آن، پیش بینی کننده این فرصت را دارد که در قیمت پایین سهام را خریداری کرده و در قیمت بالا آن را بفروشد.
1-6- اهداف تحقیق
اهداف اصلی این پژوهش عبارتند از :
شناسایی مؤثرترین اندیکاتورهای تحلیل تکنیکال برای پیش بینی قیمت سهام مورد نظر
داده کاوی سری های زمانی برای تشخیص شبیه ترین سری زمانی به سری زمانی هدف، جهت پیشبینی تغییرات آینده سهام هدف، با استفاده از تغییرات گذشته قیمت سهم مشابه
طراحی و ساخت شبکه عصبی برای پیش بینی قیمتهای بالا و پایین سهام مورد نظر
1-7- ساختار تحقیق
در ادامه این پژوهش و در فصل دوم، به معرفی شبکه های عصبی و انواع آن، داده کاوی و نقش آن در پیش پردازش داده ها و داده کاوی سریهای زمانی و اندیکاتورهای تحلیل تکنیکال میپردازیم. در فصل سوم به بیان روش تحقیق انجام شده با جزئیات کامل، شامل مراحل سه گانه پیش پردازش و ساخت اطلاعات و ابزارهای به کارگرفته شده در هر مرحله، معماری شبکه عصبی و الگوریتمهای فعال سازی و همچنین الگوریتمهای رقیب خواهیم پرداخت. در فصل چهارم، نتایج عملی به دست آمده از داده کاوی سریهای زمانی و ساخت شبکه عصبی، به تفصیل توضیح داده میشود و نتایج به دست آمده، با نتایج الگوریتمهای رقیب مقایسه می گردد. در انتها و در فصل پنجم، به بررسی نتایج و پیشنهادات برای تحقیقات آتی خواهیم پرداخت
فصل دوم
ادبیات تحقیق
2-1- مقدمه
بازارهای مالی به دلیل خصوصیات منحصر به فردی نظیر عدم نیاز به سرمایه کلان، سادگی و کم هزینه بودن معاملاتشان و عدم وجود ریسک نکول1، در عصر اخیر به یکی از پرطرفدارترین حوزههای سرمایه گذاری تبدیل شدهاند. حکومتها و دولتها نیز به این دلیل که میتوانند با گرد هم آوردن سرمایههای اندک و سرمایه های کلان، بودجههای عظیمی برای امور کشوری فراهم کنند، همواره به گسترش این بازارها کمک کرده و با تصویب قوانین متعددی از جمله معافیتهای مالیاتی در تلاش برای کشاندن پس اندازهای مردم به این بازارها بوده اند. به دلیل همین خصوصیات، حجم عظیمی از سرمایه گذاران به این حوزه وارد شده و این بازارها با سرعت چشمگیری نیز در حال رشد هستند. این حجم زیاد سرمایه گذاران، برای کسب سود از این بازارها وارد آن شده و لذا همواره به دنبال راههایی برای افزایش دامنه سود خود بوده اند. این مسئله باعث شده است که سرمایه گذاران همواره به دنبال پیش بینی اتفاقات آینده و قیمت ها در بازار بوده و از این طریق کسب سود کنند؛ به همین دلیل است که همزمان با رشد این بازارها، مدل های بسیار متنوعی برای پیش بینی بوجود آمده و در حال گسترش نیز هستند. به طور کلی شاید بتوان سرمایه گذاران را به دو دسته تقسیم کرد، آنها که به مدل کارایی بازار سرمایه اعتقاد داشته و به پیش بینی این بازارها معتقد نیستند؛ و آنهایی که به روشهای مختلفی به پیش بینی در این بازارها می پردازند. در مورد نظریه کارایی بازار در ادامه به تفسیر سخن گفته خواهد شد و لذا در ادامه به مرور روشهای متنوعی که برای پیش بینی قیمت سهام بوجود آمده و به کار گرفته شده اند خواهیم پرداخت. به صورت کلی میتوان گفت که تلاش برای پیش بینی بازارهای مالی در سه حوزه اتفاق افتاده است، حوزه اول به بررسی ساختار بازار، سهام موجود در آن و صنایع پرداخته و با شناسایی ویژگی های خاص این بازارها به تشخی
برای جستجو در بین هزاران پایان نامه
در موضوعات مختلف و دانلود متن کامل آنها
با فرمت ورد به سایت zusa.ir مراجعه نمایید